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Abstract

Test problems are used to examine the performance of several one-dimensional nu-

merical schemes based on tile space-time conservation and solution element (CE/SE)

method. Investigated in this paper are the CE/SE schemes constructed previously

for solving the linear unsteady advection-diffusion equation and the schemes derived

here for solving the nonlinear viscous and inviscid Burgers equations. In compari-

son with the numerical solutions obtained using several traditional finite-difference

schemes with similar accuracy, the CE/SE solutions display much lower numerical

dissipation and dispersion errors.
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1. Introduction

The method of space-time conservation element and solution element(to be abbre-

viated as CE/SE) is a method recently developed t)y Chang[l] for solving conservation

laws. The concept and methodology in this method are significantly different from

those in the well-established traditional methods such as the finite difference, finite

volume, finite element and spectral methods. First, the flux is conserved in time and

space when they are unified and treated equally. Second, all the dependent variables

and their derivatives are considered as individual unknowns to be solved simultane-

ously at each grid point. And third, the concepts of conservation element and solution

element are introduced to enforce both the local and global flux conservation without

using interpolation or extrapolation. It has been proven that this method is more ac-

curate than some of the traditional methods. The detailed descriptions can 1)e found

in [2] and [3].

Several numerical schemes have been constructed earlier in [2] based oil the CE/SE

method, one of which is the a-# scheme for solving tile 1-D unsteady advection-

diffnsion equation. Nmnerical results computed by the a-p. scheme are compared

in [3] with those generated by tile MacCormack scheme and the Leapfrog/Dufort-

Frankel scheme. The comparison shows that the a-p scheme is superior to the

Leapfrog/Dufort-Frankel scheme in accuracy, and has noticeable advantages over the

MacCormack scheme in both accuracy and stability.

Two additional examples are presented first to demonstrate the advantageous

behavior of the CE/SE a- H schemes whose solutions display low numerical dissipation

and dispersion errors. Solved in those examples are the 1-D unsteady wave equation

of hyperbolic type and the 1-D unsteady diffusion equation of parabolic type using

the a-H scheme with/t = 0 and a = 0, respectively. Next, the u-# scheme for viscous

Burgers equation and the u-¢-¢_ scheme for inviscid Burgers equation are derived

here based on the CE/SE method. Three test problems are used to demonstrate the

effectiveness of the CE/SE method in solving nonlinear problems.

2. Numerical Schemes

In this section a brief review of the space-time CE/SE a-# scheme developed in

[3] is described first, which is followed by tile derivation of two numerical schemes for

solving the viscous and inviscid Burgers equations.

2.1. The a-ll Scheme for Advection-Diffusion Equation

Consider the linear 1-D unsteady advection-diffusion equation

Ou Ou 02u
(i.I)

where a is the advection speed and iz is tile viscosity coefficient, l)oth being constant.

In the sl)ace-time Euclidean space E_, the integral forln of (1.1) is

NASA/TM-- 1999-209068 2



ff(v. fl_)d_ _= 0 (1.2)

0 tl •

where ft = (a_- It_x, u) and is an arbitrary st)ace-time region in E2. By the use

of Gauss' divergence theorem, Eq. (1.2) becomes

_, ft • d,_'= 0 (1.3)(v)

where S(V) is the boundary of region I" and dg'= + (dt,-dx) [3, p.141.

Tile conservation element (CE) and solution element (SE) are the two basic el-

ements to be used in the construction of numerical schemes. Some representative

CE(j, n) and SE(j, 7_) are depicted in Fig. 1. At each mesh point (j, _), there are two

CEs corresponding to two unknowns u_ and (u,)2. For any (x,t) E SE(j ,t), u(x, t)

and h(x, t) are approximated by u*(x, t;j, n) and h*(x, t; j, 7_), whose definitions are,

respectively,

u*(x,t;j,n) = u'_ + (Ux)y(x - xj) + (ut)}_(t- t '_) (1.4)

where u2, ('ux)2 and ('ut)} _ are constant in SE(j,n), which is the first-order Taylor

series expansion, and

flt*(x't:j'n)= ( au*(x't;j'n)-tLOu*(x't;j'n)' Ox ,u*(x,t;j,n))
(1.s)

The assumption that u = u*(x, t; j, n) satisfies (1.1) implies

('ut)_t = -a(u_:)_ (1.6)

It can be concluded that there are two unknowns u}_ and (u_)y at each mesh point

Considering (1.3) in an arbitrary subset of CE(j, n), be it CE+(j, n) or CE_ (j, _),

the approximation is

F+(j,n) = fv fz* .dg=0 (1.7)
(CE+(j,n))

Upon substitution of the flux leaving tile boundary of CE+(j, n) into Eq. (1.7), we

can obtain

4

Ax e F:L (j, n)

1 .-_/ _n-1/2 ]

-b_ [(1 - u 2 + _)('Ux)y + (1 - u2 _ <,P_,_tx)jJcl/2 ]

n n-1/2_
-_ 2(1AxT u)(uj -uy+l/, 2 ) = 0 (1.8)

At 4pAt are the Courant number and diffusion nmnber,
where u = a_ and _ - (Ax) 2

respectively. By adding and subtracting the two equations in (1.8), and for 1-u2+( ¢
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0, we obtain

_/?} --
3

1 , n-l/2 x n-l/2

2{(l+u)uJ-_/2 +(1 +(1-u 2-- I/)_Uj+l/2 -- _)

4 [, ,,,-1/2 , ,,,-1/2{ltx)j_l/2 -- _ltx)j+l/2 ] (1.9)

(,,x)y = 1 { 4 ,,-1/2 n-1/2,2(1 - u' + {) (u2 - 1)_,: ("j-,/2 -"j+1/2)

-(1-u 2-{) [(1- " ,n-1/2 ,, ,,,-,/2U)_?lx)j_l/2 -t- (1 + u)lu,)j+l/2 ]} (1.10)

Equations (1.9) and (1.10) are the general form of the a-p scheme. It is an explicit

time marching scheme with second-order accuracy in space and time, whose stability

condition is u < 1. Detailed descriptions and analysis (:an be found in [2] and [3].

2.2. The a Scheme for Unsteady Wave Equation

With p = 0, Eq. (1.1) reduces to tile following unsteady wave equation, which is

a first-order hyperbolic partial differential equation:

01t O'll

0--_-+ O_x =0 (2.1)

Tile a scheme, which is obtained by setting ( = 0 in Eqs. (1.9) and (1.10), is a schelne

without any numerical dissit)ation. Its accuracy, and stability condition are the same

as those of the a-p scheme.

2.3. The p Scheme for Unsteady Diffusion Equation

On the other hand, with a = 0 Eq. (1.1) reduces to an unsteady diffusion equation,

which is a se(:ond-order parabolic partial differential equation:

O%tt 0 2 'tt

Ot - t Oz2 (3.1)

(3.1) is deduced fl'om (1.9) and (1.10) by letting u = 0,The It scheme for Eq.

which has the following form:

,, = 21 { ,,-t/e'uJ- 1/2 __. ,Uj+I/2n-1/2 + (1- g) _ ,[(ltx)j-l/2'n-1/2 ,, ,n-l/2}__ (_U.x)j+l/2 ] (3.2)_ _ j

,, 1 { 4 . n_l/2 n_l/2, (1 _) [, ,n_l/2 , ,n_l/2"l}- - + j (3.3)('u,)j 2(1 + _) _ (ui-1/2 - 'ui+l/2 ) - -

For tile boundary CEs, it is obtained from (1.8) that

1 2 _ n-l/2,
[(1 + _)(Ux)j + (1 - "-" ,,,-,/21 (,uj = 0 (3.4)n <)tv*)J+a/'e ] + _ _ UJ+l/2)
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for CE+(j, n), and

1 2 7_ n-1/2_

2 [(1 + _)(_x);_+ (1- "" ,,-,/2 % = 0 (3.5)_)(ux)j-t/'2 ] + _ - u j_l/2)

for CE_(j, n). At a boundary point with defined u'_ (u_)y can be comlmted using

either Eq. (3.4) or Eq. (3.5) for the left or right boundary.
Note that in the al)sence of the Couram number u, the l* scheme is characterized

only by the diffusion number ( and is unconditionally stable with the same accuracy

as the a-lt scheme.

2.4. The _-p Scheme for Viscous Burgers Equation

If the constant a in E(t. (1.1) is replaced by u, the resulting equation

Ou Ou 02u (4.1)
0--7+ u _ = p 0z 2

is called the viscous Burgers equation, which is a nonlinear unsteady advection-

diffusion equation with advection speed u. Its conservative form is

Ou Of 02u (4.2)

1 2

where f = _u . The t,-p scheme for (4.2)

for the a-lt scheme. Equations (1.2)-(1.4)

and (1.6), we define

is derived in a proce(ture similar to that

are still valid here. Instead of Eqs. (1.5)

f*(x,t;j, rt) = fy + (A)}_(x - xj) + (ft)_j*(t- t '_) (4.3)

where .fj_, (f_)}' and (.ft)y are also constant in SE(j, n), 1)eing respectively the numer-

ical analogues of f, Of/Ox, and Of lOt at grid point (j, n), and

l ,
h*(x,t;j,n)= f (x,t,j, Ou*(x,t;j,n) u*(x,t;j,n) ) (4.4)n) - p, 0:r '

The equivalent of Eq. (1.6) is

Since f = _u 2, we have

(ut)}' = -(fx)_ (4.5)

1

.fj, = _ (uy) _ (4.6)

(I_), _= _j (_);, (4.7)

(f,)j = 'u2 (u,.)._ (4.8)
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Substituting the flux leaving the boundary of CE+(j, n) into (1.7) results in

4

A_,_F,(j, _) = -I-_1 (1 + _)('ux)_' -4- (1 - _)tux)j+,/.e -4- ( .:)2 [(fi)_ + ,.ttJj±l/2 ]

2[ A, F-l" .-,/2.]+&-Tx :F_(fj 3±1/2 ) + (uy = 0 (4.9)n __ __ Uj±I/2)

Using Eqs. (4.5)-(4.8), we obtain from (4.9)

,, 1 r n-l/2 ,_-1/2 ,_-1/2
Uj --- -ff ['Uj_l/2 -F ?lj±l/2 -I- 8j_l/2 --

n-l/2 ]

8j+l/2 ] (4.10)

alld

n 2 I n--l12 n-l/2 n-l/2 n--l�2 7n n
('/lx)J _--- _[llj±l/2 --"lj-I/2 -- Sj+I/2 -- Sj-I/2 +,j.;)/(a +._- (.7)_) (4.11)

At

where t j A:r uj, ( has the same definition as before, an(t

,,-1/2_ Ax , ,_-J/2,21 ),_-1/2 1 ,,-1/2 ,-1/2 (4.12)'_0±_/2- --4- [1 - _ - tU;±l/,ej j (u. j±1/2+ -_uj±_/2uj±_/2

For boundary CEs, (4.9) reduces to

1 (un_ 2 ,, , n-U2,2 , ,_-_/21
{[1-, j, +_] ('u_:)j + [1-[t/j±l/2) -_] [?£x)j+l/2]

- - 5+1/2 Uj+l/2J + (u'_- uj+_/2) = 0 (4.13)

for CE+ (j, n), and

1 , nx2 r n-1/2,L2 i _n-l/2)

----2 { I1 -- I/Q) -{-_] (llx)_'+-[1 -- {.t.'j_l/2} -- _] [?.tx,j_l/2]

+E-7. _ ('J'_"- " - =; Uy_l/2 uj_t/2) + (uj Uy_l/2) 0 (4.14)

for CE_(j, n). At a boundary points with defined uy, (Ux)}' can be computed using

either Eq. (4.13) or E(I. (4.14) for the left or right boundary.

Note that the Courant number u2 is no longer a constant. Equations (4.10) and

(4.11) are the time-marching u-# scheme, which is still second-order accurate in space

and time. The stability condition is again Courant number t)eing less than 1, i.e.,
At

I'u,,_,,x_[ _< 1, which can be derived by von Nemnann's stability analysis.

2.5. The u-e-(t Scheme for Inviscid Burgers Equation

The inviscid Burgers equation in conservative form is deduced by letting p = 0 in

Eq. (4.2),
Ou Of

0--7+ _ = 0 (5.i)
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It is expectedthat the u-p scheme may become unstable as # --+ 0 frolll the usual be-

havior of nonlinear problems. To introduce numerical dissit}ations for computational

stability, tile assumption F:_(j, r_) = 0 is replaced by

F_(j, _) = + 4l - -2)'.X*_4 (du_,)_ (5.2)

where _ is a constant for controlling the numerical dissipation and

1 , ,--U2 , ,_-t/2 , ,,-1/2 ,-l/2 ,
4' = [ + ] - t,,,+,/ -U/Ix)j÷l/2 (Ux)j-1/2

(5.3)

Also, tile flux fit* is assumed to be conserved over CE(j, n), i.e.,

F(j, .) = L' fit*.d,_= 0
(CE(j,n))

(5.4)

where fit* = ( if(x, t; j, n), u*(x, t; j, n) ).

Then following the same procedure as that in deriving the u-p scheme, we finally

obtain
,, 1, ,_-1/2 ,_-1/2 ^,_-_/2 _,,-,/2

= '2"=(_tJ-1/2 -t-'llj+l/, 2 -_-8j_1/2 -Sj+l/2 ) (5.5)?lj

where

and

in which

with

^n-l/2 AX , n-1/2,2 ] , ,n-l�2 1 ,-_/2 _-1/'2

,sj±_/2 = _ [1 - (uj±_/2) ] U*'_)a±U'2 + _ l]j±l/2 U'j±I/2
(5.6)

n w0 ,_ (2e 1(_), = (_), + - )(d,x)y (5.7)

I.,**÷1° + lu.-F'
(5.8)

n-l/2 At n-1/2 n

T±_/_ + T("*'),+w ' -", (5.9)
('_)_ = ± _./2

Note that the indices in Eq. (5.8) are dropped for simplicity. Detailed derivations of

(5.7)-(5.9) are referred to [2].

In the u-¢'-(_ scheme e and a are used to control numerical dissipations, and u is

the Courant number, u and ( are restricted by the stability condition that u <_ 1 and

0 < e < 1, and o: is a positive integer, such as 1 or 2, being used to suppress over- and

,ruder-shoots near a disc{mtinnity in the solution. Its accuracy is the saine as that of

the u-p scheme.
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3. Test Problems and Discussions

All of tile one-dimensional schemes described in the previous section are tested

using appropriate model pr()blems. The numerical results are compared with those

obtained by some traditional finite-difference methods to examine their accuracy.

3.1. Test of the a Scheme

Consider the first-order wave equation

where a = 0.5 in the domain -1 <" x < 1. The initial condition is described as

u(x, 0) = sin(cox)

where w, = 7r. With t)eriodic 1)oundary conditions imposed at x = -1 and x = 1, the

exact solution is

,.(x, t) = sin( ( - at))

This problem is solved by using the CE/SE a scheme, Lax-Wendroff scheme, and

first-order upwinding scheme, respectively. Different Courant numbers with 50 cells

are used for each scheme to see the effect of varying the size of time step. Numerical

solutions at t = 10 = 2.5T based on the CE/SE scheme, Lax-wendroff (L-W) scheme,

and first-order upwind scheme with CFL = 0.5 are shown in the upper frame of

Fig. 2 with the exact solution plotted as a solid line, while the corresponding error

distril)utions of the first two schemes are shown in the lower frame of Fig. 2. The error

is defined as the difference between the numerical solution and the exact solution. It

can be seen that the large numerical dissipation in the upwind scheme causes strong

damping of the wave amplitude. From the error distribution, it is concluded that the

CE/SE scheme has less error than the L-W scheme of the same order of accuracy.

In Fig. 3, the results based on CFL = 0.954 show that all of the three scheines

have smaller errors for larger Courant numbers. The CE/SE scheme is still the most

accurate scheme. To see tim effect of numerical errors after a long time convection,

the CE/SE and L-W solutions and error distribution at t = 100 = 25T are shown

in Figs. 4 and 5 for CFL = 0.5 and 0.954, respectively. For the L-W scheme, a

large immerical dispersion error is generated by using a smaller time step size when

the wave propagates for a long time. Under the same computational conditions, the

CE/SE scheme is still more accurate than the L-W scheme.

3.2. Test of the It Scheme

The p scheme is used t<) solve the unsteady diffusion equation (3.1)

Oa 02'u

Ot -- It-O:r2
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which was solved in [4] by using several traditional finite-difference methods.

The initial and boundary conditions are stated as follows:

t = O, 'u=bo for x=O

u=O for O<x<h

and

t > 0, u=U0 for :1:=0

u = 0 for x = h

For fair comparisons, the grid size Ax = 0.001m and physical parameters

U0 = 40 m/_', h = 0.04 m, It = 2.17 x 10 -4 'm2/s

that are identical to those adopted in other finite-(tifferenee schemes are used here.

For the CE/SE scheme, ('u,V_._J are set as zero in the entire domain at t = 0, and (u,)y

at the left and right boundaries are computed using Eqs. (3.4) and (3.5), respectively,

in the time marching. Figure 6 shows the nmnerical solution at several selected time

steps computed by the p scheme with At = 0.001s. Error comparisons of the It scheme

(At = 0.001,0.002 and 0.003s) with the Forward-Time Central-Space (FTCS) scheme

(At = 0.002s) and Dufort-Frankel (D-F) scheme (At = 0.003s) are shown in Fig. 7 at

t = 0.18s, and in Fig. 8 at t = 1.08s. It is known that relatively large time steps are

allowed in both It scheme and D-F scheme because they are unconditionally stable,

whereas the time step size in FTCS scheme is restricted by its stability condition
At 1

that, Iz (Ax) 2 -< _. The comparisons show that the I_ scheme is better than the FTCS

explicit scheme in both accuracy and stability as time increases, and its performance

is generally much better than that of the D-F explicit scheme. Furthermore, the

accuracy of the l* scheme increases with decreasing time step.

The Crank-Nicolson implicit scheme was also used to solve the same problem and

was found to have generated a highly accurate solution with At = 0.01s as shown in

[4]. The It scheme, however, cannot produce solutions of comparable accuracy even

with much smaller time step sizes. This fact implies that, in order to improve the

accuracy of the II scheme in the space-time CE/SE method for solving the unsteady

diffusion equation, the development of an implicit scheme is needed.

3.3 Test of the u-l* Scheme

The non-dimensional form of the viscous Burgers equation (3.2) is

Ou Of 02 u
-- .AU

Ot Ox Ox 2

which has an analytical solution

2 sinh x

cosh :r - e -t

NASA/I'M-- 1999-209068 9



This I)roblem was solved in [4] in the interval [-9, 9] by several finite-difference

sctmmes, such as ttle FTCS, Dufort-Frankel explicit schemes, and Backward-Time

Central-Space (BTCS) implicit scheme. The initial condition for the present numer-

ical computation is set as the analytical solution at t = 0.1. The boundary condition

is specified as u = 2.0 and -2.0 at x = -9 and 9, respectively, and (u,)2 = 0 at both

boundaries. The grid size Ax = 0.2 and time step At = (/.01 used here are the same

as those in [4]. Ttle numerical solutions at different time levels obtained by the u-p

scheme with At = 0.01 are plotted in the upper one of Fig. 9 in comparison with

the exact solutions plotted as solid lines. The corresponding error profiles are plotted

in the lower frame of Fig. 9. Under exactly the same computational conditions, the

result of the u-p scheme is much more accurate than those computed by the three

finite-difference schemes mentioned above, as shown in Fig. 10. For example, at

t = 0.4 and 1.0, the maximum errors for the u-# scheme are 0.0155 and 6.266 x 10 -a,

respectively, as compared to 0.08 and 0.02 for the other three schemes. Keeping tile

same grid size of Ax = 0.2, accuracy of the u-p scheme call be iInproved by reducing

the time step size as shown in Fig. 11.

3.4. Test of the u-e-a Scheme

For the inviscid Burgers equation, consider a discontinuous initial condition de-

scribed t)3,

u(x,O) = 1, 0.0 _< x _< 2.0

u(x, 0) = 0, 2.0 _< x _< 4.0

as the first test problem.

Several finite-difference schemes, including Lax, Lax-Wendroff, MacCormack ex-

plicit, and Beam-Warming implicit schemes, were used to solve this problem with

At = 0.1 and Ax = 0.1 in [4]. The numerical results obtained by using the u-e-a

scheme with e = 0.5 and a: = 1 at different times are shown in Fig. 12, disclosing the

desired performance in a numerical solution. Unlike the other four schemes, whose

results at t = 0.6 are shown in Fig. 13, tile u-e-(_ scheme is able to generate a smooth

solution without any oscillations and capture a discontinuity within only two grid

points. Figure 14 shows how the time step size affects the solution. The smear of

discontinuity is suppressed by increasing At or the Courant number u. The best

result is obtained for u,,,_x = 1.0.

The second test problem is taken from [5]. The initial condition is described as

u(x, 0) = 0.75 + 0.25 sin(2_rx), 0 < x < 1

which is a continuous linear wave. Tile periodic boundary condition is imposed at

x = 0 and x = 1. The exact solution is referred to [5]. The CE/SE solutions obtained

at different time levels using <._kx= 0.02 and At = 0.016 are shown in Fig. 15 in

comparison with tile exact solution plotted as a solid line. In the upper and lower

NASA/TM-- 1999- 209068 10



frames of Fig. 15, the solutions at t = 0.2, 0.4, 0.6 using e = 0, rx = 0, and those

at t = 0.8, 1.0, 1.2, 1.4, 1.6 using e = 0.5, (_ = 2, are shown respectively. It can be

said that a fairly accurate solution is obtained, especially at. later time levels without

showing any wiggles near tile discontinuity.

Conclusion

The various schemes based oi1 the space-time conservation element and solution

element method have been used to solve the 1-D unsteady wave equation, unsteady

diffusion equation, viscous and inviscid Burgers equations. Five numerical test prob-

lems have been presented to demonstrate that CE/SE schemes have much lower

numerical dissipation and dispersion errors, thus are more accurate than some of the

traditional finite-difference methods.
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Figure 1: The 1-D CEs and SEs used in tile space-time CE/SE nmthod.
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Figure 2: Numerical solutions and the corresponding error distributions at _ = 10

using CFL = 0.5 for various schemes.
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